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Presentation Outline

• What is the Laser Absorption Spectrometer (LAS)?
• Why Coherent LAS? – Pro’s and Con’s
• Airborne LAS Transceiver Architecture

– Higher power METEOR lasers
– Frequency Offset-Locking
– Absolute Frequency Locking to CO2 Cell
– Mechanical Overview
– Telescope Design

• Impact of Measurement from Aircraft
– Need for dynamically tuned receiver frequency band 

• Activities for next year
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Concept for Global CO2 Laser Absorption 
Spectrometer (LAS)

• Transmit and receive near nadir-pointing laser 
beams with on and off-line wavelength channels

– Ground surface reflection (land and sea) 
provides return signal – requires co-aligned 
beams to obtain equal backscatter coefficients 
and equal depolarization factors for both 
channels

– Measure difference in integrated path 
absorption at these two wavelengths

• Use additional sensor data (temperature, surface 
pressure, altimetry) to extract value of CO2
concentration

– Goal of 1 ppmv precision with ~ 50-100 km 
horizontal resolution (large scale 
measurements)

• Eventual plan is to perform global measurement 
from Low Earth Orbit Satellite (LEOS) platform

• Development plan includes interim measurement 
and technology demonstration from airborne 
platform – NASA DC-8 Science Aircraft
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Key Design Features of the
LAS Transceiver

• Coherent CW transceiver with 3 lasers and two broadcast channels
– Laser 1 locked to center of CO2 line feature at 2051nm for absolute frequency 

reference
• Line selected for low temperature dependence of absorption strength and for 

match to emission wavelength of Tm,Ho:YLF laser
– Laser 2 offset-locked by 4GHz to Laser 1 for broadcast on side of absorption feature
– Laser 3 offset-locked by 20GHz to Laser 1 (FM sideband lock) for off-line broadcast

Line center at
2050.96nm vacuum
wavelength
(4875.749cm-1)

Offset-locked lasers
tunable by +/- 4GHz 
about set-point

FM sideband frequency
spacing ~9GHz for 
relative off-line offset 
of ~2GHz
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LAS Weighting Functions
provide Altitude Resolution
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• LAS at 2050.9nm biased to PBL (<2km from surface) where CO2 source and 
sink structures are most measurable against 370 ppmv background

• Strong bias to PBL allows a single on-line wavelength to be used in the LAS 
measurement without ambiguity
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Why Coherent LAS? 
Pro’s and Con’s

• Pro’s:
– Coherent detection CW LAS offers improved narrowband SNR for a given transmit 

power and aperture size compared with direct detection with a pulsed transmitter
• Narrow-band heterodyne detection reduces detector Noise Equivalent Power 

(NEP) and sensitivity to background irradiance
– Attractive especially for space-borne measurement due to reduction in Power-

Aperture product (with associated reduction in instrument complexity and launch cost)
• Con’s:

– Statistical distribution of intensity in speckles (coherent detection) results in a relative 
uncertainty in estimate of mean value ∼ proportional to N-1/2, where N is number of 
independent samples (speckle realizations)

– For 0.1% measurement precision (0.4 ppmv precision in 370 ppmv level), require 
averaging over 1 million independent speckle realizations

• With a 4cm transmit beam radius, 1M samples = 40km measurement resolution
• At 200m/s flight speed, each LAS measurement obtained every 200 seconds

– Equivalent values for space-based platform:
• 12cm transmit beam radius (30cm aperture), 1M samples = 120km resolution
• 7km/s orbit velocity, each LAS measurement obtained every 17 seconds
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LAS System Diagram
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Functional Configuration of LAS 
Transceiver Optical Bench (Surface 1)

• Dual monostatic layout (on-
line and off-line) using PM 
spectrometer for CO2 lock

• Lasers and ¼ wave plates 
physically located on Surface 
2

• JPL providing on-board 
reference target for 
calibration check of on-line 
and off-line channels during 
flight

– Allows correction for 
component thermal 
sensitivity, required for 
amplitude 
measurements with 
0.1% precision
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Optical Bench Layout - Surface 1 
with Reference CO2 Cell 

CO2 Reference Cell

Periscope w/2 D.O.F. (2ea)

2X Expander (2ea)

Online Transmit/Receive
Polarization Switch

Electro-Optic Modulator
(Offline offset-lock)

2mm Fiber ports from SLM 
Lasers and to heterodyne 
detectors and beat 
detectors (7ea)

Adjustable turn mirrors

Acousto-Optic
Modulator

Electro-Optic Modulator 
(CO2 Lock)

Power Monitor Packages

Offline Transmit/Receive
Polarization Switch

Temperature-stabilized Aluminum bench

Wave Plate/Polarizer 
Assemblies

Laser 3 Off-Line 
Fiber Port

Shutter, 2ea
CO2 Heterodyne Detector

Laser 1 Reference 
Fiber Port

Laser 2 On-Line 
Fiber Port
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Optical Bench Layout – Second Surface with 
Telescopes and fiber-coupled Lasers

Periscope Assembly
With 1/4 Wave Plate

MO Assembly, Liquid Cooled

Fiber Coupler Assembly

Telescopes
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Higher Power Tm,Ho:YLF Laser
developed for CO2 LAS

Tm:Ho:YLF METEOR  SLM LI Curve
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• 250mW Tm,Ho:YLF METEOR® developed using 3W pump diode
• 150mW output to LAS telescopes (including fiber-coupling loss)

• All frequency characteristics same as standard CTI 50mW METEOR®
• 5-10kHz/ms linewidth, free-running
• All units in LAS XCVR PZT-tuned for absolute and relative frequency lock
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Absolute Frequency Lock to Reference 
CO2 Cell
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• Phase Modulation (PM) Spectrometry used to lock Laser 1 (reference laser) to CO2
line center at 2051nm

– EOM provides FM sidebands at +/-170MHz for probing Doppler-broadened line 
profile (~350MHz linewidth at 0.5 Torr) – high error signal slope at lock point

– AOM isolates CO2 lock optics from “unwitting interferometers” arising from rest of 
system optics – Residual Amplitude Modulation (RAM) noise reduction

– Other optics (lenses, polarizers, iris) also introduced to reduce RAM noise
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Error Signal Generation using 
Phase Modulation Spectrometer

• Electro-optic modulator imposes equal amplitude 
and opposite phase sidebands on the carrier (C)

• Spectrometer detector measures the added beat 
amplitudes of the two sidebands with the carrier

• Away from the absorption feature, both sidebands 
are transmitted equally (100%)

• The combined error signal is zero
• At line center, both sidebands are equally 

attenuated (straddling the symmetric absorption 
feature)

• The combined error signal is again zero
• On either side of the absorption line center, one 

sideband is attenuated less than the other, 
resulting in a non-zero error signal with reversed 
polarity about line center

• Error signal used in servo loop to tune carrier 
frequency to absorption line center
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Phase Modulation Spectrometer
Electronics Design

• RF detection phase depends on path difference of LO signal 
(blue) and modulation signal (green), including optical path from 
modulator to detector (red)
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Survey Scan and Absolute Lock
to Reference CO2 Cell

• Upper plot shows a survey scan over 20 GHz tuning 
range of METEOR® laser  

• Red trace shows output of PM spectrometer (CO2
lock error signal)

• Green trace shows laser PZT voltage
• 5 peaks identified (CO2 isotopes)

• Peaks #1 and #2 distorted because of high 
amplitude (RF amplifier saturation)

• Instrument is locked to strongest peak, #1 at 
~2051nm (4875.749cm-1)

• Locked laser shows peak-to-peak frequency excursions 
of less than 300kHz

• Major improvement over previously reported 
performance for absolute frequency lock to CO2

• Red trace is demodulated error signal
• Yellow trace is raw RF beat signal

• CO2 LAS measurement requires absolute frequency 
knowledge to <1MHz (long-term linewidth, not peak-to-
peak variation)

• Absolute frequency lock readily achieved

1MHz1MHz
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Lock
Point

1 2
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Offset Locking of Online and Offline Lasers

• Frequency Offset-Locking hardware is used to locate on-line and off-line laser 
frequencies w.r.t. line-center reference laser frequency

– Typical offset-locking accuracy previously demonstrated ~ 5kHz
– Frequency noise of locked laser matches that of reference laser for noise 

components inside servo bandwidth
– Additional high frequency noise of locked laser similar to that of reference laser
– As a result, locked laser has ~ same short-term linewidth as reference laser (5-

10kHz/ms) • Offset-Locking Process:
– Output from Tunable Laser (MO) 

and Reference Laser (LO) optically 
mixed and detected with wideband 
photodiode/ preamplifier package

– Beat frequency compared with 
preset frequency generated by 
Direct Digital Synthesizer (DDS)

– Phase-locked loop error signal 
amplified and used to drive MO 
frequency actuator (PZT)

– Zero-crossing error signal obtained 
when beat frequency matches DDS 
frequency

(DDS)
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Support and Vibration
Isolation System

Valves for purging
w/dry nitrogen (LN2 boil off)

Hermetic D-Sub connectors  

Frame structure w/crossed gusseting
provides high stiffness, reduced mass

1-1/4” OD Alum. 6061-T6 Braces

Fiber and liquid 
feedthrus

Four connector panels to 
accommodate feedthrus

Four point mounting to support structure
implemented at critical locations  

Base Structure  
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Enclosure Design

CG

12”

25” Dia.

6.08” Window separation, symmetric about C.L.

4.84” from C.L.

14.125 Typ. 

31.25”

30.25”

4.5” Dia. C.A.

Clearance for ½” fastener
Estimated Mass: 280 lbs
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Peak to valley 0.034 waves @ 2 microns

Telescope Design and Analysis
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Telescope Design and Analysis
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LAS Bandwidth Reduction increases 
CNR and reduces Data Storage

• Instrument attitude adjusted for LOS Doppler frequency shifts centered at 15MHz (with ~+/- 1MHz variation 
due to expected aircraft and target motion)

– Front-end receiver band set to 10 to 20MHz
• Digitally tunable 5-band filter used in signal processor (both for on-line and off-line channels) to determine 

and center Doppler-shifted return signal
– Maximum amplitude algorithm and in-band FFT’s used to center return signals within center detection 

bands (using stronger off-line channel signal for tuning control)
– 10 bands digitized (5 for on-line, 5 for off-line) for signal capture and centering
– 6 bands (3 on-line and 3 off-line) mixed to base-band and stored (I and Q) for post processing
– Front end digital tuning adjusted every 1ms, initialized using Aircraft INS data
– Narrowband SNR (CNR) increased due to bandwidth reduction per bin from 10MHz to 100kHz
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Digitizer able to track and center signal at 
-3dB CNR (integrated power)

Threshold
Level
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Digitizer Tracking Performance at
-6dB CNR (integrated power)

Threshold
Level
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Expected off-line CNR allows robust 
ground return frequency tracking

• Assumptions for plotted data
– 8cm beam diameter, monostatic

• Effective beam diameter will be 
reduced due to aircraft boundary layer, 
especially towards rear of aircraft –
degradation in CNR

– 10% lidar system efficiency
– Off-line LAS wavelength 2051.25nm
– ρπ = 0.1 and 0.01 /sr
– Good visibility

• For 100kHz processor bandwidth and 5km 
platform altitude:

– Off-line CNR ~3dB for 0.01/sr reflectance
• Acceptable for tracking algorithm

– Off-line CNR ~13dB for 0.1/sr reflectance
• Tracking algorithm should be robust 

while allowing for CNR reduction due 
to aircraft boundary layer 
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Presentation Summary

• LAS Transceiver being developed for Integrated Path Differential Absorption (IPDA) CO2
concentration measurements from NASA DC-8 aircraft

– System Level CDR recently completed (May 2003)
– Telescope integration and ground tests to be performed beginning of 2004
– Flight measurements due late 2004

• Design based on previous CTI sub-assemblies for airborne sensors
• Required laser performance demonstrated in 1st of 4 identical units

– Fabrication of remaining 3 units nearly completed
• Absolute frequency locking demonstrated to required sub-MHz accuracy

– CO2 lock obtained to Doppler-broadened line (~350MHz wide) using PM 
Spectrometer technique with sidebands at +/- 170MHz

• Offset-locking requirements identical to previously demonstrated performance
• Dynamic tuning of receiver bandwidth required to correct for aircraft motion

– Risk reduction demonstration indicates function may be performed with COTS digital 
front end unit


